
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2495826

Steering Behaviors For Autonomous Characters

Article · June 2002

Source: CiteSeer

CITATIONS

1,008
READS

8,549

1 author:

Some of the authors of this publication are also working on these related projects:

Evolutionary goal-oriented texture synthesis View project

Crowd/flock simulation View project

Craig Reynolds

retired

28 PUBLICATIONS   12,426 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Craig Reynolds on 03 November 2012.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2495826_Steering_Behaviors_For_Autonomous_Characters?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2495826_Steering_Behaviors_For_Autonomous_Characters?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Evolutionary-goal-oriented-texture-synthesis?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Crowd-flock-simulation?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Craig-Reynolds?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Craig-Reynolds?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Craig-Reynolds?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Craig-Reynolds?enrichId=rgreq-775abca69efc6269a8fc95bc4c67b96b-XXX&enrichSource=Y292ZXJQYWdlOzI0OTU4MjY7QVM6MTAyNDIxMDA3MTc1Njg2QDE0MDE0MzA0Nzk2ODQ%3D&el=1_x_10&_esc=publicationCoverPdf


Steering Behaviors For Autonomous Characters
Craig W. Reynolds

Sony Computer Entertainment America
919 East Hillsdale Boulevard
Foster City, California 94404

craig_reynolds@playstation.sony.com
http://www.red.com/cwr/

cwr@red.com

Keywords: Animation Techniques, Virtual/Interactive Environments, Games, Simulation, behavioral animation, 
autonomous agent, situated, embodied, reactive, vehicle, steering, path planning, path following, pursuit, 
evasion, obstacle avoidance, collision avoidance, flocking, group behavior, navigation, artificial life, 
improvisation.

Abstract

This paper presents solutions for one requirement of autonomous characters in animation and 
games: the ability to navigate around their world in a life-like and improvisational manner.  
These “steering behaviors” are largely independent of the particulars of the character’s means 
of locomotion.  Combinations of steering behaviors can be used to achieve higher level goals 
(For example: get from here to there while avoiding obstacles, follow this corridor, join that 
group of characters...)  This paper divides motion behavior into three levels.  It will focus on the 
middle level of steering behaviors, briefly describe the lower level of locomotion, and touch 
lightly on the higher level of goal setting and strategy.

Introduction

Autonomous characters are a type of autonomous agent intended for use in computer 
animation and interactive media such as games and virtual reality.  These agents represent a 
character in a story or game and have some ability to improvise their actions.  This stands in 
contrast both to a character in an animated film, whose actions are scripted in advance, and to 
an “avatar” in a game or virtual reality, whose actions are directed in real time by a human 
player or participant.  In games, autonomous characters are sometimes called non-player 
characters.

An autonomous character must combine aspects of an autonomous robot with some skills of a 
human actor in improvisational theater.  These characters are usually not real robots, and are 
certainly not human actors, but share some properties of each.

The term “autonomous agent” is used in many contexts, so the following is an attempt to locate 
the terminology of this paper in relation to other fields of study.  An autonomous agent can 
exist in isolation, or it can be situated in a world shared by other entities.  A “data mining” agent 
is an example of the former, and a controller for a power grid is an example of the latter.  A 
situated agent can be reactive (instinctive, driven by stimulus) or it can be deliberative 
(“intellectual” in the classic AI sense). An autonomous agent can deal exclusively with abstract 
information (“softbot”, “knowbot”, or “information agent”) or it can be embodied in a physical 
manifestation (a typical industrial robot or an autonomous vehicle).  Combinations of situated, 
reactive, and embodied define several distinct classes of autonomous agents.



The category of situated, embodied agents usually suggests autonomous robots: mechanical 
devices that exist in the real world.  Sometimes robots are studied via computational 
simulation.  But that practice is viewed with suspicion by purists in the robotics field because 
the simulation may diverge from reality in unpredictable ways.  There is another class of 
situated, embodied agent based on a computational model. This paper will use the term virtual 
(as in virtual reality) to denote these agents which, rather than being simulations of a 
mechanical device in the real world, are instead real agents in a virtual world.  (Analogous to a 
physically-based model in computer animation.)  Hence the autonomous characters of this 
paper’s title are: situated, embodied, reactive, virtual agents.

The term behavior has many meanings.  It can mean the complex action of a human or other 
animal based on volition or instinct.  It can mean the largely predictable actions of a simple 

mechanical system, or the complex action of a 
chaotic system.  In virtual reality and multimedia 
applications, it is sometimes used as a synonym 
for “animation.”  In this paper the term behavior 
is used to refer to the improvisational and life-
like actions of an autonomous character.

The behavior of an autonomous character can 
be better understood by dividing it into several 
layers.  These layers are intended only for 
clarity and specificity in the discussion that will 
follow.  Figure 1 shows a division of motion 

behavior for autonomous characters into a hierarchy of three layers: action selection, steering, 
and locomotion.  Certainly other dissections are possible.  A similar three layer hierarchy is 
described by Blumberg and Galyean [Blumberg 95], they call the layers: motivation, task, and 
motor.  Note that while the behavioral hierarchy presented here is intended to be widely 
applicable to motion behaviors, it is not well suited for other types of autonomous actions, for 
example the conversational behaviors of a “chatterbot” require a significantly different 
structure.

Consider, for example, some cowboys tending a herd of cattle out on the range.  A cow 
wanders away from the herd.  The trail boss tells a cowboy to fetch the stray.  The cowboy 
says “giddy-up” to his horse and guides it to the cow, possibly avoiding obstacles along the 
way.  In this example, the trail boss represents action selection: noticing that the state of the 
world has changed (a cow left the herd) and setting a goal (retrieve the stray).  The steering 
level is represented by the cowboy, who decomposes the goal into a series of simple subgoals 
(approach the cow, avoid obstacles, retrieve the cow).  A subgoal corresponds to a steering 
behavior for the cowboy-and-horse team.  Using various control signals (vocal commands, 
spurs, reins) the cowboy steers his horse towards the target.  In general terms, these signals 
express concepts like: go faster, go slower, turn right, turn left, and so on.  The horse 
implements the locomotion level.  Taking the cowboy’s control signals as input, the horse 
moves in the indicated direction.  This motion is the result of a complex interaction of the 
horse’s visual perception, its sense of balance, and its muscles applying torques to the joints of 
its skeleton.  From an engineering point of view, legged locomotion is a very hard problem 
[Raibert 91], [Hodgins 95], but neither the cowboy nor the horse give it a second thought.

Action Selection: strategy, goals, planning

Steering: path determination

Locomotion: animation, articulation

Figure 1: A hierarchy of motion behaviors



This paper will focus on steering, the middle layer of the behavioral hierarchy.  It will briefly 
describe a simple model of the locomotion layer, but only in enough detail to provide a 
concrete foundation for the discussion of various steering behaviors.  There will be some brief 
discussion of action selection, but primarily in the context of combining and blending basic 
steering behaviors.

Path-finding is a topic related to, but separate from, the subject of this paper.  Path-finding 
algorithms such as A* and Dijkstra's operate on networks (often representing grids) and 
essentially solve mazes.  Such a solution could serve as a specification to the steering 
techniques described in this paper.  An analogy might be to compare the written driving 
instructions for getting from one place to another with the act of driving the car along that route.  
For an excellent over view of path-finding see [Reese 99].

In order to understand the thrust of this work, it should be noted that the steering behaviors 
discussed here relate to “fast” motion: running versus crawling.  This is an informal notion, but 
is meant to suggest that the typical velocity of a character is large relative to its maximum 
turning acceleration.  As a result, the steering behaviors must anticipate the future, and take 
into account eventual consequences of current actions.

Related Work

Steering behaviors for autonomous characters draw on a long history of related research in 
other fields.  Autonomous machines, servomechanisms, and control theory have their roots in 
the 1940s as described in Norbert Wiener’s 1948 book Cybernetics, or Control and 
communication in the Animal and the Machine [Wiener 48].  The term cybernetics came from a 
Greek word meaning steersman.  During the late 40s neurophysiologist Grey Walter 
constructed autonomous robotic turtles [Walter 50] which embodied several of the steering 
behaviors described here and were among the first machines to exhibit emergent life-like 
behavior.

In the early 1980s Valentino Braitenberg extrapolated Walter’s prototypes into thought 
experiments about a series of fanciful “vehicles” with progressively more complex behaviors 
[Braitenberg 84]. David Zeltzer began applying techniques and models from artificial 
intelligence to animation applications [Zeltzer 83].  And in 1987, I created an animated 
behavioral model of bird flocks using techniques closely related to those presented in this 
paper [Reynolds 87].

The list below of related research is divided into three general categories: robotics, artificial 
intelligence, and artificial life, although in some cases the distinction is somewhat arbitrary. 
Generally these works are oriented towards animation to some extent: they are located in the 
overlap between animation (or games, VR, and multimedia) and these three other fields.

Work related to robotics.  Rodney Brooks popularized the then-radical notion of building 
reactive controllers for robotic systems [Brooks 85].  While originally inspired by ethological 
(animal behavior) research, the work of Ron Arkin [Arkin 87, 89, 92] has centered on 
application of steering behaviors to mobile robots. Arkin’s research has paralleled much of the 
work presented in this paper, but his schema (perception›action mappings) are expressed in 
terms of potential field models as opposed to the procedural approach described here.  In 
some cases this is a distinction without a difference, but in other cases (such as obstacle 
avoidance) it leads to significantly different agent behavior.  Marc Raibert and Jessica Hodgins 



both began in legged robotics research and now both work in animation applications of 
physically realistic legged systems.  In both cases, their work has touched on steering and 
path planning aspects of these systems [Raibert 91, 91b], [Hodgins 95].  Work by Zapata et al. 
on steering controllers for fast mobile robots focused on strategies which had to deal with 
momentum and other aspects of fast mechanical motion [Zapata 1992].  Maja Mataric has 
worked extensively in collective robotics [Mataric 93] and a central theme of this work is 
steering.

Work related to artificial intelligence. Ken Kahn created an early system that generated 
animation of character motion from story descriptions [Kahn 79]. David Zeltzer [Zeltzer 83, 90] 
pioneered AI-based animation, popularizing the idea of abstract “task level” specification of 
motion.  Gary Ridsdale [Ridsdale 87] created characters capable of improvising complex 
motion, getting from A to B while avoiding static obstacles and other actors.  Steve 
Strassmann’s Desktop Theater work [Strassmann 1991] extended these notions to include 
handling of props and emotional portrayal. Mônica Costa’s agent-based behavioral animation 
work [Costa 90] allows a character to navigate around a house while reactively avoiding 
obstacles.  Research on improvisational, dramatic characters, which touches on  steering 
behavior, is ongoing at Project Oz (and now Zoesis) by Joseph Bates et al. [Bates 92] and at 
The Virtual Theater Project by  Barbara Hayes-Roth et al. [Hayes-Roth 96].

Work related to artificial life (and other fields).  The 1987 boids model of flocks, herds, 
schools and related group motion [Reynolds 87], decomposed this complex group behavior to 
three simple steering behaviors at the individual level.  The following year related steering 
behaviors for obstacle avoidance [Reynolds 88] were presented.  At the 1987 Artificial Life 
Workshop Mitchel Resnick presented work on autonomous vehicles implemented in LEGO 
LOGO [Resnick 89] and Michael Travers demonstrated his AGAR Animal Construction Kit 
[Travers 89].  (See also more recent work by these authors [Resnick 93] and [Travers 94].)  
Steering behaviors were a key element in The Virtual Fishtank, a multiuser VR installation at 
The Computer Museum created by teams from MIT’s Media Lab and NearLife [Resnick 98].  
Armin Bruderlin procedurally generated goal directed animation of human walking [Bruderlin 
1989].  Randall Beer’s dissertation on an artificial cockroach [Beer 90] is noteworthy for the 
depth and complexity of its neuroethological model.  Central to this model are neural 
implementation of several tropisms (such as chemotaxis and thigmotaxis) which are direct 
analogs of steering behaviors described below.  In [Wilhelms 90] Jane Wilhelms and Robert 
Skinner investigate architectures for vehicle-like characters.  Thalmann et al. created 
behavioral animation characters who navigated down corridors and around obstacles using 
vision as simulated with 3D rendering [Thalmann 90].  Michiel van de Panne created 
controllers for tasks like parallel parking of an automobile using state-space search [van de 
Panne 90].  G. Keith Still has modeled large human crowds using a model of the steering 
behavior of each individual [Still 94].  Using a modified genetic algorithm, Karl Sims 
simultaneously evolved brains and bodies for artificial creatures for various styles of 
locomotion and for goal seeking [Sims 94].  In work first reported at SAB94 and updated at 
SAB96 [Cliff 96], Cliff and Miller coevolved pursuit and evasion behaviors for predator and prey 
agents.  Xiaoyuan Tu et al. developed an elaborate and strikingly realistic model of the 
biomechanics, locomotion, perception, and behavior of fish in [Tu 94, 96] which included 
physically based locomotion, steering behaviors, and an ethologically based system for action 
selection.  In [Blumberg 94] Bruce Blumberg described a detailed mechanism for complex 



action selection and with Tinsley Galyean in [Blumberg 95] discussed the design for a VR 
character capable of both autonomous improvisation and response to external direction.  One 
application of these characters was in the ALIVE system [Maes 95] by Patties Maes et al.  The 
Improv system by Ken Perlin and Athomas Goldberg [Perlin 96] also covers the gamut from 
locomotion to action selection, but uses a unique approach based on behavioral scripting and 
Perlin’s 1985 procedural synthesis of textures [Perlin 85] applied to motion.  James Cremer 
and colleagues have created autonomous drivers to serve as “extras” creating ambient traffic 
in interactive automobile driving simulators [Cremer 96].  Robin Green (of Bullfrog/EA) has 
developed a mature system for autonomous characters used in Dungeon Keeper 2 which was 
inspired in part by an early draft of this paper.  Dave Pottinger has provides a detailed 
discussion of steering and coordination for groups of characters in games [Pottinger 1999].

Locomotion 

Locomotion is the bottom of the three level behavioral hierarchy described above.  The 
locomotion layer represents a character’s embodiment.  It converts control signals from the 
steering layer into motion of the character’s “body.”  This motion is subject to constraints 
imposed by the body’s physically-based model, such as the interaction of momentum and 
strength (limitation of forces that can be applied by the body).

As described above, a cowboy’s horse can be considered as an example of the locomotion 
layer.  The rider’s steering decisions are conveyed via simple control signals to the horse who 
converts them into motion. The point of making the abstract distinction between steering and 
locomotion is to anticipate “plugging in” a new locomotion module. Imagine lifting the rider off 
of the horse and placing him on a cross-country motorcycle.  The goal selection and steering 
behavior remain the same.  All that has changed is the mechanism for mapping the control 
signals (go faster, turn right, ...) into motion.  Originally it involved legged locomotion (balance, 
bones, muscles) and now it involves wheeled locomotion (engine, wheels, brakes).  The role of 
the rider is unchanged.  

This suggests that with an appropriate convention for communicating control signals, steering 
behaviors can be completely independent of the specific locomotion scheme.  Although in 
practice it is necessary to compensate for the “agility” and  different “handing characteristics” of 
individual locomotion systems.  This can be done by adjusting tuning parameters for a given 
locomotion scheme (which is the approach taken in the steering behaviors described below) or 
by using an adaptive, self-calibrating technique (the way a human driver quickly adapts to the 
characteristics of an unfamiliar automobile).  In the first case a steering behavior might 
determine via its a priori tuning that the character’s speed in a given situation should be 23 
mph, in the second case it might say “slow down a bit” until the same result was obtained.

The locomotion of an autonomous character can be based on, or independent from, its 
animated portrayal.  A character could be represented by a physically-based dynamically 
balanced  simulation of walking, providing both realistic animation and behavioral locomotion.  
Or a character may have a very simple locomotion model (like described in the next section) to 
which a static (say a spaceship) or pre-animated (like a human figure performing a walk cycle) 
portrayal is attached.  A hybrid approach is to use a simple locomotion model and an adaptive 
animation model, like an inverse-kinematics driven walk cycle, to bridge the gap between 
abstract locomotion and concrete terrain.  Finally, locomotion can be restricted to the motion 



inherent in a fixed set of pre-animated segments (walk, run, stop, turn left...) which are either 
selected discretely or blended together.

A Simple Vehicle Model

The approach taken in this paper is to consider steering behaviors as essentially independent 
from the underlying locomotion scheme.  A simple locomotion model will be presented in order 
to make the discussion of steering behaviors more concrete.  This locomotion model will be 
based on a simple idealized vehicle.  The choice of the term “vehicle” is inspired to some 
degree by [Braitenberg 84]. It is intended to encompass a wide range of conveyances, from 
wheeled devices to horses, from aircraft to submarines, and (while certainly stretching the 
terminology) to include locomotion by a character’s own legs.  The vehicle model described 
here is so simplistic and generic that it is an equally good (or equally bad) approximation to all 
of those.

This vehicle model is based on a point mass approximation.  On the one hand that allows a 
very simple and computationally cheap physically-based model (for example, a point mass has 
velocity (linear momentum) but no moment of inertia (rotational momentum)).  On the other 
hand, it cannot be a very compelling physical model because point masses do not exist in the 
real world.  Any physical object with mass must have a non-zero radius and hence a moment 
of inertia.  This use of an oversimplified non-physical vehicle model is merely for convenience 
and intended to be “without loss of generality” — it should always be possible to substitute a 
more plausible, more realistic physically based vehicle model.

A point mass is defined by a position property and a mass property. In addition, the simple 
vehicle model includes a velocity property. The velocity is modified by applying forces.  
Because this is a vehicle, these forces are generally self-applied, and hence limited. For 
example, a typical force which adjusts a vehicle’s velocity is thrust, generated by the vehicle’s 
own power plant, and hence limited in magnitude by the capacity of the power plant.  For the 
simple vehicle model, this notion is summarized by a single “maximum force” parameter 
(max_force).  Most vehicles are characterized by a top speed.  Typically this limitation is due to 
the interaction between acceleration due to their finite thrust and the deceleration due to 
viscous drag, friction, or (in legged systems) the momentum of reciprocating parts. As an 
alternative to realistic simulation of all these limiting forces, the simple vehicle model includes a 
“maximum speed” parameter (max_speed).  This speed limit is enforced by a kinematic 
truncation of the vehicle’s velocity vector.  Finally, the simple vehicle model includes an 
orientation, which taken together with the vehicle’s position form a velocity-aligned local 
coordinate space to which a geometric model of the vehicle can be attached.  (The terms 
localize and globalize will be used in this paper to connote transforming vectors into and out of 
this local space.)

Simple Vehicle Model:
mass scalar
position vector
velocity vector
max_force scalar
max_speed scalar
orientation N basis vectors



For a 3D vehicle model, the position and velocity vector values have three components and 
the orientation value is a set of three vectors (or a 3x3 matrix, or a quaternion).  For a 2D 
vehicle, the vectors each have two components, and the orientation value is two 2D basis 
vectors or can be represented as a single scalar heading angle.

The physics of the simple vehicle model is based on forward Euler integration.  At each 
simulation step, behaviorally determined steering forces (as limited by max_force) are applied 
to the vehicle’s point mass.  This produces an acceleration equal to the steering force divided 
by the vehicle’s mass.  That acceleration is added to the old velocity to produce a new velocity, 
which is then truncated by max_speed.  Finally, the velocity is added to the old position:

steering_force = truncate (steering_direction, max_force)
acceleration = steering_force / mass
velocity = truncate (velocity + acceleration, max_speed)
position = position + velocity

The simple vehicle model maintains its velocity-aligned local space by incremental adjustment 
from the previous time step.  The local coordinate system is defined in terms of four vectors: a 
position vector specifying the local origin, and three direction vectors serving as the basis 
vectors of the space.  The basis vectors indicate the direction and length of coordinate units in 
each of three mutually perpendicular directions relative to the vehicle.  These axes will be 
referred to here as forward, up, and side.  (These correspond, of course, to X, Y and Z axes of 
R3.  But some people think up is obviously Y while some think it is obviously Z.  The descriptive 
terms will be used in place of the Cartesian names for clarity.)

In order to remain aligned with velocity at each time step, the basis vectors must be rotated 
into a new direction.  (If velocity is zero the old orientation is retained.)  Instead of using explicit 
rotations, the local space is reconstructed using a combination of substitution, approximation, 
and reorthogonalization.  We start with the new velocity and an approximation to the new up 
direction.  For example, the old up direction can be used as an approximation to the new up. 
We use the vector cross product operation to construct the new basis vectors:

new_forward = normalize (velocity)
approximate_up = normalize (approximate_up)      // if needed
new_side = cross (new_forward, approximate_up)
new_up = cross (new_forward, new_side)

The basic idea is that the approximate up is nearly perpendicular to the new forward direction, 
because frame-to-frame changes in orientation are typically small.  The new side direction will 
be perpendicular to new forward, from the definition of cross product. The new up is the cross 
product of the perpendicular forward and side and so is perpendicular to each.

The concept of “velocity alignment” does not uniquely specify an orientation.  The degree of 
freedom corresponding to rotation around the forward axis (also known as roll) remains 
unconstrained. Constructing the new local space relative to the previous one (by, for example, 
using the old up direction as the initial approximation to the new one) will ensure that the roll 
orientation at least remains consistent.  Defining the “correct” roll value requires further 
heuristics, based on the intended use of the vehicle model.

For a “flying” vehicle (like aircraft, spaceship, and submarines) it is useful to define roll in terms 
of banking.  The basic idea of banking is to align the “floor” of the vehicle (-up axis) with the 
apparent gravity due to centrifugal force during a turn.  Conversely we want the up direction to 



align with the centripetal force that produced the maneuver.  In the presence of gravity, the 
down direction should align with the sum of turning acceleration and gravitational acceleration.  
We also want to add in the current orientation in order to damp out abrupt changes in roll.  So 
to implement banking in the simple vehicle model, the approximate up direction is a weighted 
sum of: steering acceleration, gravitational acceleration, and the old up.

For a “surface hugging” (wheeled, sliding, or 
legged) vehicle, we want to both constrain the 
vehicle’s position to the surface and to align the 
vehicle’s up axis to the surface normal.  In 
addition the velocity should be constrained to be 
purely tangential to the surface.  These 
requirements can be easily met if the surface 
manifold is represented in such a way that an 
arbitrary point in space (corresponding to the old 
vehicle position) can be mapped to: (1) the 

nearest point on the surface, and (2) the surface normal at that point.  The velocity can be 
made tangent by subtracting off the portion normal to the surface. The vehicle’s position is set 
to the point on the surface, and the surface normal becomes its up axis.

In this simple vehicle model, the control signal passed from the steering behaviors to the 
locomotion behavior consists of exactly one vector quantity: a desired steering force.  More 
realistic vehicle models would have very different sets of control signals.  For example an 
automobile has a steering wheel, accelerator and brake each of which can be represented as 
scalar quantities.  It is possible to map a generalized steering force vector into these scalar 
signals: the side component of the steering vector can be interpreted as the steering signal, 
the forward component of the steering vector can be mapped into the accelerator signal if 
positive, or into the brake signal if negative.  These mappings can be asymmetrical, for 
example a typical automobile can decelerate due to braking much faster than it can accelerate 
due to engine thrust, as shown in Figure 2.

Because of its assumption of velocity alignment, this simple vehicle model cannot simulate 
effects such as skids, spins or slides.  Furthermore this model allows the vehicle to turn when 
its speed is zero.  Most real vehicles cannot do this (they are “non-holonomic”) and in any case 

it allows undesirably large changes in orientation 
during a single time step.  This problem can be 
solved by placing an additional constraint on 
change of orientation, or by limiting the lateral 
steering component at low speeds, or by 
simulating moment of inertia. 

Steering Behaviors

This discussion of specific steering behaviors 
assumes that locomotion is implemented by the 
simple vehicle model described above, and is 
parameterized by a single steering force vector.  
Therefore the steering behaviors are described in 

thrust braking

st
ee

rin
g

Figure 2: asymmetrical steering forces

Figure 3: seek and flee

seek
 steering

flee steering

desired
velocity
(seek) target

current
velocity  

seek path

flee path

desired
velocity

(flee)



terms of the geometric calculation of a vector representing a desired steering force.  Note that 
generally the magnitude of these steering vectors is irrelevant, since they will typically be 
clipped to max_force by the vehicle model.  Note also that many of the calls to length and 
normalize functions in these formulations can be replaced by fast routines that use an 
approximation to length as in [Ohashi 94].  The terms “we” or “our” will sometimes be used to 
indicate the first person perspective of the character being steered by a given behavior.  
Animated diagrams illustrating these behaviors can be found on the web at 
http://www.red.com/cwr/steer/

Seek (or pursuit of a static target) acts to steer the character towards a specified position in 
global space.  This behavior adjusts the character so that its velocity is radially aligned towards 
the target.  Note that this is different from an attractive force (such as gravity) which would 
produce an orbital path around the target point. The “desired velocity” is a vector in the 
direction from the character to the target.  The length of “desired velocity” could be 
max_speed, or it could be the character’s current speed, depending on the particular 
application.  The steering vector is the difference between this desired velocity and the 

character’s current velocity, see Figure 3.

desired_velocity = normalize (position - 
target) * max_speed
steering = desired_velocity - velocity

If a character continues to seek, it will eventually 
pass through the target, and then turn back to 
approach again.  This produces motion a bit like a 
moth buzzing around a light bulb.  Contrast this 
with the description of arrival below.

Flee is simply the inverse of seek and acts to 
steer the character so that its velocity is radially 
aligned away from the target. The desired velocity 
points in the opposite direction. 

Pursuit is similar to seek except that the quarry 
(target) is another moving character.  Effective pursuit requires a prediction of the target’s 
future position.  The approach taken here is to use a simple predictor and to reevaluate it each 
simulation step.  For example, a linear velocity-based predictor corresponds to the assumption 
that the quarry will not turn during the prediction interval. While this assumption is often 
incorrect, the resulting prediction will only be in use for about 1/30 of a second.  The position of 
a character T units of time in the future (assuming it does not maneuver) can be obtained by 
scaling its velocity by T and adding that offset to its current position.  Steering for pursuit is 
then simply the result of applying the seek steering behavior to the predicted target location.  
See Figure 4.

The key to this implementation of pursuit is the method used to estimate the prediction 
interval T. Ideally, T would be the time until interception, but that value is unknowable because 
the quarry can make arbitrary and unpredictable maneuvers.  T could be assumed to be a 
constant, which while naive, would produce better pursuit than simple seek (which 
corresponds to T=0).  However for reasonable performance T should be larger when the 
pursuer is far from the quarry, and small when they are nearby.  A simple estimator of 

Figure 4: pursuit and evasion  

now

future

pursuit

evasion

quarry



moderate quality is T=Dc where D is the distance between pursuer and quarry, and c is a 
turning parameter.  A more sophisticated estimator can be obtained by taking into account the 
relative headings of pursuer and quarry, and whether the pursuer is generally ahead of, 
behind, or to the side of, the quarry.  These two metrics can be expressed in terms of simple 

dot products (between unit forward vectors, and 
between the quarry’s forward and the offset to the 
pursuer’s position).  Note that care must be taken 
to reduce T (e.g to zero) when the pursuer finds 
itself aligned with, and in front of, its quarry.

Another approach to both seek and pursuit is 
based on the fact that when our character is on a 
collision course with a target, it will appear at a 
constant heading in our character’s local space.  
Conversely our character can steer toward 
interception by contriving to keep the target at a 
constant heading.

Evasion is analogous to pursuit, except that flee 
is used to steer away from the predicted future 
position of the target character.  Optimal 
techniques for pursuit and evasion exist in the field 
of control theory [Isaacs 65]. The versions given 
here are intended to be lightweight and are 
nonoptimal.  In natural systems, evasion is often 
“intentionally” nonoptimal in order to be 
unpredictable, allowing it to foil predictive pursuit 
strategies, see [Cliff 96].

Offset pursuit refers to steering a path which 
passes near, but not directly into a moving target.  
Examples would be a spacecraft doing a “fly-by” or 
an aircraft doing a “strafing run”: flying near 
enough to be within sensor or weapon range 

without colliding with the target. The basic idea is to dynamically compute a target point which 
is offset by a given radius R from the predicted future position of the quarry, and to then use 
seek behavior to approach that offset point, see Figure 5.  To construct the offset point: 
localize the predicted target location (into our character’s local coordinate space) project the 
local target onto the character’s side-up plane, normalize that lateral offset, scale it by -R, add 
it to the local target point, and globalize that value. 

Arrival behavior is identical to seek while the character is far from its target.  But instead of 
moving through the target at full speed, this behavior causes the character to slow down as it 
approaches the target, eventually slowing to a stop coincident with the target, as shown in 
Figure 6.  The distance at which slowing begins is a parameter of the behavior.  This 
implementation is similar to seek: a desired velocity is determined pointing from the character 
towards the target.  Outside the stopping radius this desired velocity is clipped to max_speed, 
inside the stopping radius, desired velocity is ramped down (e.g. linearly) to zero.

Figure 5: offset pursuit

Figure 6: arrival



target_offset = target - position
distance = length (target_offset)
ramped_speed = max_speed * (distance / slowing_distance)
clipped_speed = minimum (ramped_speed, max_speed)
desired_velocity = (clipped_speed / distance) * target_offset
steering = desired_velocity - velocity

Real world examples of this behavior include a baseball player running to, and then stopping at 
a base; or an automobile driving towards an 
intersection and coming to a stop at a traffic light.

Obstacle avoidance behavior gives a character 
the ability to maneuver in a cluttered environment 
by dodging around obstacles.  There is an 
important distinction between obstacle 
avoidance and flee behavior.  Flee will always 
cause a character to steer away from a given 
location, whereas obstacle avoidance takes 
action only when a nearby obstacle lies directly in 
front of the character. For example, if a car was 
driving parallel to a wall, obstacle avoidance 
would take no corrective steering action, but flee 
would attempt to turn away from the wall, 
eventually driving perpendicular to it.

The implementation of obstacle avoidance behavior described here will make a simplifying 
assumption that both the character and obstacle can be reasonably approximated as spheres, 
although the basic concept can be easily extend to more precise shape models.  Keep in mind 
that this relates to obstacle avoidance not necessarily to collision detection. Imagine an 
airplane trying to avoid a mountain. Neither are spherical in shape, but it would suffice that the 
plane’s bounding sphere avoids the mountain’s bounding sphere.  A decomposable hierarchy 
of bounding spheres can be used for efficient representation of shapes for collision detection 
[Hubbard 96], and presumably for obstacle avoidance too.  An unrelated obstacle avoidance 
technique is described in [Egbert 96].

The geometrical construction of obstacle avoidance behavior bares some similarity to the 
offset pursuit behavior described above.  It is convenient to consider the geometrical situation 
from the character’s local coordinate system.  The goal of the behavior is to keep an imaginary 
cylinder of free space in front of the character.  The cylinder lies along the character’s forward 
axis, has a diameter equal to the character’s bounding sphere, and extends from the 
character’s center for a distance based on the character’s speed and agility.  An obstacle 
further than this distance away is not an immediate threat.  The obstacle avoidance behavior 
considers each obstacle in turn (perhaps using a spatial portioning scheme to cull out distance 
obstacles) and determines if they intersect with the cylinder.  By localizing the center of each 
spherical obstacle, the test for non-intersection with the cylinder is very fast.  The local 
obstacle center is projected onto the side-up plane (by setting its forward coordinate to zero) if 
the 2D distance from that point to the local origin is greater than the sum of the radii of the 
obstacle and the character, then there is no potential collision.  Similarly obstacles which are 
fully behind the character, or fully ahead of the cylinder, can be quickly rejected.  For any 

A

B

C

Figure 7: obstacle avoidance  



remaining obstacles a line-sphere intersection calculation is performed.  The obstacle which 
intersects the forward axis nearest the character is selected as the “most threatening.”  
Steering to avoid this obstacle is computed by negating the (lateral) side-up projection of the 

obstacle’s center.  In Figure 7 obstacle A does 
not intersect the cylinder, obstacles B and C do, 
B is selected for avoidance, and corrective 
steering is to the character’s left.  The value 
returned from obstacle avoidance is either (a) the 
steering value to avoid the most threatening 
obstacle, or (b) if no collision is imminent, a 
special value (a null value, or the zero vector) to 
indicate that no corrective steering is required at 
this moment.

A final note regarding interaction of obstacle 
avoidance and goal seeking.   Generally we only 
care about obstacles which are between us and 
our goal.  The mountain beyond the airport is 
ignored by the airplane, but the mountain 

between the plane and the airport is very important.

Wander is a type of random steering.  One easy implementation would be to generate a 
random steering force each frame, but this produces rather uninteresting motion.  It is “twitchy” 
and produces no sustained turns.  A more interesting approach is to retain steering direction 
state and make small random displacements to it each frame.  Thus at one frame the 
character may be turning up and to the right, and on the next frame will still be turning in 
almost the same direction.  The steering force takes a “random walk” from one direction to 
another.  This idea can be implemented several ways, but one that has produced good results 
is to constrain the steering force to the surface of a sphere located slightly ahead of the 

character.  To produce the steering force for the 
next frame: a random displacement is added to 
the previous value, and the sum is constrained 
again to the sphere’s surface.  The sphere’s 
radius (the large circle in Figure 8) determines the 
maximum wandering “strength” and the 
magnitude of the random displacement (the small 
circle in Figure 8) determines the wander “rate.”  
Another way to implement wander would be to 
use coherent Perlin noise [Perlin 85] to generate 
the steering direction.

Related to wander is explore (where the goal is to 
exhaustively cover a region of space) and forage 
(combining wandering with resource seeking).  
See [Beer 90] and [Tu 96] for more details.

Path following behavior enables a character to steer along a predetermined path, such as a 
roadway, corridor or tunnel.  This is distinct from constraining a vehicle rigidly to a path like a 

Figure 8: wander  

Figure 9: path following



train rolling along a track.  Rather path following behavior is intended to produce motion such 
as people moving down a corridor: the individual paths remain near, and often parallel to, the 
centerline of the corridor, but are free to deviate from it.  In the implementation described here, 
a path will be idealized as a spine and a radius.  The spine might be represented as a spline 
curve or a “poly-line” (a series of connected line segments).  The path is then a “tube” or 
“generalized cylinder:” a circle of the specified radius, swept along the specified spine.  The 
goal of the path following steering behavior is to move a character along the path while 
staying within the specified radius of the spine.  If the character is initially far away from the 
path, it must first approach, then follow the path.

To compute steering for path following, a velocity-based prediction is made of the character’s 
future position, as discussed above in regard to 
obstacle avoidance behavior.  The predicted 
future position is projected onto the nearest point 
on the path spine.  See Figure 9.  If this projection 
distance (from the predicted position to the 
nearest on-path point) is less than the path radius, 
then the character is deemed to be correctly 
following the path and no corrective steering is 
required.  Otherwise the character is veering away 
from the path, or is too far away from the path.  To 
steer back towards the path, the seek behavior is 
used to steer towards the on-path projection of the 
predicted future position.  Like in obstacle 
avoidance, a null or zero value is returned is 
returned if no corrective steering is required.  A 
path can be followed without regard to direction, 

or in a specified direction (from A to B or from B to A) by adjusting the target point along the 
path in the desired direction.

Variations on path following include wall following and containment as shown in Figure 10.  
Wall following means to approach a “wall” (or other surface or path) and then to maintain a 
certain offset from it [Beer 90].  For a discussion of offset goals, see offset pursuit above.  

Containment refers to motion which is restricted 
to remain within a certain region.  Path 
following is a type of containment where the 
allowable region is a cylinder around the path’s 
spine.  Examples of containment include: fish 
swimming in an aquarium and hockey players 
skating within an ice rink.  To implement: first 
predict our character’s future position, if it is 
inside the allowed region no corrective steering 
is necessary.  Otherwise we steer towards the 
allowed region.  This can be accomplished by 
using seek with an inside point (for example, we 
can project the future position to the obstacle 
surface, and then extend this offset to obtain a 

Figure 10: wall following, containment 

wall following

Figure 11: flow following  

V
F

S



target point) or we can determine the intersection of our path with the boundary, find the 
surface normal at that point, and then use the component of the surface normal which is 
perpendicular to our forward direction as the corrective lateral steering.

Flow field following steering behavior provides a useful tool for directing the motion of 
characters based on their position within an environment.  It is particularly valuable in some 
production teams because it allows motion specification to be made without use of 

programming and so can used by the art staff 
directly.  In the case of game production this 
person might be a “level designer” and in 
animation production they might be a “scene 
planner” or “layout artist.”   

In flow field following behavior the character 
steers to align its motion with the local tangent of a 
flow field (also known as a force field or a vector 
field). The flow field defines a mapping from a 
location in space to a flow vector: imagine for 
example a floor with arrows painted on it.  Such a 
map, typically representing the floor plan of an 
environment, can be easily created by an artist 
with a special purpose “paint” program which 
allows them to draw the desired traffic flow with a 
paint brush.  The implementation of flow field 

following is very simple.  The future position of a character is estimated and the flow field is 
sampled at that location.  This flow direction (vector F in Figure 11) is the “desired velocity” and 
the steering direction (vector S) is simply the difference between the current velocity (vector V) 
and the desired velocity.

Unaligned collision avoidance behavior tries to keep characters which are moving in 
arbitrary directions from running into each other.  Consider your own experience of walking 
across a plaza or lobby full of other walking people: avoiding collisions involves predicting 
potential collisions and altering your direction and speed to prevent them.  If all nearby 

characters are aligned, a less complicated 
strategy can be used, see separation below.

To implement this as a steering behavior, our 
character considers each of the other characters 
and determines (based on current velocities) when 
and where the two will make their nearest 
approach. A potential for collision exists if the 
nearest approach is in the future, and if the 
distance between the characters at nearest 
approach is small enough (indicated by circles in 
Figure 12). The nearest of these potential 
collisions, if any, is determined. The character 
then steers to avoid the site of the predicted 
collision. It will steer laterally to turn away from the Figure 13: neighborhood

angle

distance

now
future

future

now

Figure 12:
     unaligned collision avoidance  



potential collision. It will also accelerate forward or 
decelerate backwards to get to the indicate site 
before or after the predicted collision.  In Figure 12 
the character approaching from the right decides 
to slow down and turn to the left, while the other 
character will speed up and turn to the left.

The next three steering behaviors: separation, 
cohesion, and alignment, relate to groups of 
characters.  In each case, the steering behavior 
determines how a character reacts to other 
characters in its local neighborhood.  Characters 
outside of the local neighborhood are ignored.  As 
shown in Figure 13, the neighborhood is specified 
by a distance which defines when two characters 
are “nearby”, and an angle which defines the 
character’s perceptual “field of view.”

Separation steering behavior gives a character 
the ability to maintain a certain separation 
distance from others nearby.  This can be used to 
prevent characters from crowding together.  To 
compute steering for separation, first a search is 
made to find other characters within the specified 
neighborhood.  This might be an exhaustive 
search of all characters in the simulated world, or 
might use some sort of spatial partitioning or 
caching scheme to limit the search to local 
characters.  For each nearby character, a 
repulsive force is computed by subtracting the 
positions of our character and the nearby 
character, normalizing, and then applying a 1/r 
weighting.  (That is, the position offset vector is 
scaled by 1/r 2.)  Note that 1/r is just a setting that 
has worked well, not a fundamental value. These 
repulsive forces for each nearby character are 
summed together to produce the overall steering 
force.  See Figure 14.

Cohesion steering behavior gives an character 
the ability to cohere with (approach and form a 
group with) other nearby characters.  See Figure 
15.  Steering for cohesion can be computed by 

finding all characters in the local neighborhood (as described above for separation), 
computing the “average position” (or “center of gravity”) of the nearby characters.  The steering 
force can applied in the direction of that “average position” (subtracting our character position 
from the average position, as in the original boids model), or it can be used as the target for 
seek steering behavior.

Figure 14: separation 

Figure 15: cohesion 

Figure 16: alignment  



Alignment steering behavior gives an character the ability to align itself with (that is, head in 
the same direction and/or speed as) other nearby characters, as shown in Figure 16.  Steering 
for alignment can be computed by finding all characters in the local neighborhood (as 

described above for separation), averaging 
together the velocity (or alternately, the unit 
forward vector) of the nearby characters.  This 
average is the “desired velocity,” and so the 
steering vector is the difference between the 
average and our character’s current velocity (or 
alternately, its unit forward vector).  This steering 
will tend to turn our character so it is aligned with 
its neighbors.

Flocking behavior: in addition to other 
applications, the separation, cohesion and 
alignment behaviors can be combined to produce 
the boids model of flocks, herds and schools 
[Reynolds 87] (see also [Tu 94], [Tu 96] and 
[Hodgins 94]).  In some applications it is sufficient 

to simply sum up the three steering force vectors to produce a single combined steering for 
flocking (see Combining Behaviors below).  However for better control it is helpful to first 
normalize the three steering components, and then to scale them by three weighting factors 
before summing them.  As a result, boid flocking behavior is specified by nine numerical 
parameters: a weight (for combining), a distance and an angle (to define the neighborhood, 
see Figure 13) for each of the three component behaviors.

Leader following behavior causes one or more character to follow another moving character 
designated as the leader.  Generally the followers want to stay near the leader, without 
crowding the leader, and taking care to stay out of the leader’s way (in case they happen to 
find them selves in front of the leader).  In addition, if there is more than one follower, they 
want to avoid bumping each other.  The implementation of leader following relies on arrival 
behavior (see above) a desire to move towards a point, slowing as it draws near.  The arrival 
target is a point offset slightly behind the leader.  (The offset distance might optionally 
increases with speed.)  If a follower finds itself in a rectangular region in front of the leader, it 
will steer laterally away from the leader’s path before resuming arrival behavior.  In addition 
the followers use separation behavior to prevent crowding each other.  See Figure 17.

Finally, here are quick sketches of some other steering behaviors that fit into the same general 
category as those described in more detail above. Interpose steering behavior attempts to put 
its character between two other moving characters, for example a soccer player trying to block 
a pass between two members of the opposing team.  The general approach is similar to 
pursuit described above: predict the future position of the two other characters, determine a 
target point by interpolating between the future positions, and use seek to steer toward the 
target point.  Related to leader following and pursuit, we could shadow our quarry by 
approaching and then using alignment to match their speed and heading.  The arrival 
behavior described above can be considered a constraint on position and speed.  This can be 
extended to simultaneously constrain orientation (to produce docking), or a non-zero velocity, 
and/or to meet these constraints at a given time.  Hide behavior involves identifying a target 

Figure 17: leader following  



location which is on the opposite side of an obstacle from the opponent, and steering toward it 
using seek.  

Combining Behaviors

The individual steering behaviors described above serve as building blocks for more complex 
patterns of behavior.  They are components of a larger structure, like notes of a melody or 
words of a story.  In order to make interesting and life-like behaviors we need to select among, 
and blend between, these individual components.  Unless an autonomous character exists in 
an very simple world, it would seldom make sense for the character to continually execute a 
single steering behavior.

Combining behaviors can happen in two ways.  A character may sequentially switch between 
behavioral modes as circumstances change in its world.  For example, imagine caribou 
grazing in a meadow when suddenly they sense wolves approaching.  This event triggers a 
discrete behavioral switch.  All thoughts of grazing are forgotten as the caribou herd turns to 
flee from the predators.  There is no tendency to mix these behaviors: a caribou will not slow 
down while running from a wolf in order to grab another bite of food.  These discrete changes 
of behavioral state take place at the action selection level, the top of the three level behavioral 
hierarchy discussed in the Introduction.  There is a extensive discussion of action selection in 
[Tu 94], [Tu 96] and in [Blumberg 94].

On the other hand, some kinds of behaviors are commonly blended together, effectively acting 
in parallel.  For example, as the caribou flee through the forest, they blend evasion and 
obstacle avoidance together to allow them to escape from the wolves while dodging trees. A 
caribou cannot afford to ignore either component behavior, it must always be moving in a 
direction that both takes it away from the wolf and avoids collisions with trees.  This behavioral 
blending occurs at the middle steering level of the behavioral hierarchy.

Blending of steering behaviors can be accomplished in several ways. The most straightforward 
is simply to compute each of the component steering behaviors and sum them together, 
possibly with a weighting factor for each of them.  (Note that steering vectors are especially 
easy to blend, other kinds of behaviors, producing other kinds of values (e.g. conversational 
behaviors) could be much harder to combine.)  This simple linear combination often works 
well, but has at least two shortcomings: it is not the most computationally efficient approach, 
and despite adjusting the weights, component behaviors may cancel each other out at 
inopportune times.  

The computation load can be decreased by observing that a character’s momentum serves to 
apply a low-pass filter to changes in steering force.  So rather than compute several steering 
components each simulation step and average them together, we could instead select one 
steering component to compute and apply each frame, and depend on momentum (and 
perhaps some explicit damping of acceleration) to blend them together.  

The problem of components canceling each other out can be addressed by assigning a priority 
to components.  (For example: first priority is obstacle avoidance, second is evasion ...)  The 
steering controller first checks to see if obstacle avoidance returns a non-zero value 
(indicating a potential collision), if so it uses that.  Otherwise, it moves on to the second priority 
behavior, and so on.  



A hybrid of these techniques that the author has found useful is “prioritized dithering”: with a 
certain probability the first priority behavior is evaluated, and if it returns a non-zero (non-null) 
value that will be used.  Otherwise (if the behavior returns zero, or it was skipped over due to 
the random selection) the second priority behavior is considered, and so on.

In [Reynolds 87] a blending scheme called “prioritized acceleration allocation” was used with 
the boids flocking model.  The basic idea was that by adjusting their magnitude, higher priority 
behaviors could decide whether or not to leave any steering force for use by lower priority 
behaviors.  In the course of several reimplementations of boids over the years, a simple linear 
combination of the component behaviors has proved sufficient.  When combining flocking with 
other behaviors such as obstacle avoidance, both simple summing and prioritized dither have 
been used successfully.  

Conclusions

This paper defined “autonomous character” in terms of autonomous agents and 
improvisational action.  It presented a decomposition of the task of constructing motion 
behaviors for autonomous characters into a three level hierarchy of: action selection, steering, 
and locomotion.  It has defined a minimal implementation of the locomotion level in terms of a 
“simple vehicle model.”  It has then presented a collection of simple, common steering 
behaviors.  (Including: seek, flee, pursuit, evasion, offset pursuit, arrival, obstacle 
avoidance, wander, path following, wall following, containment, flow field following, 
unaligned collision avoidance, separation, cohesion, alignment, flocking, and leader 
following.)  Finally it has described some techniques for blending these simple steering 
behaviors together.

Acknowledgments

The techniques described in this paper have been developed over the last twelve years, for 
many different projects, at several companies.  I wish to acknowledge the helpful cooperation 
of all the companies and coworkers involved.  Specifically I wish to thank the following people 
for managerial support and technical collaboration.  At Sony Computer Entertainment America: 
Phil Harrison, John Phua, Attila Vass, Gabor Nagy, Sky Chang, and Tom Harper.  At 
DreamWorks Feature Animation: Dylan Kohler, Bart Gawboy, Matt Arrott, Lance Williams, Saty 
Raghavachary, and Mike Ullner.  At SGI’s Silicon Studio: Bob Brown, Leo Blume, Roy 
Hashimoto, and especially my behavioral animation colleague Xiaoyuan Tu.  At Electronic 
Arts: Luc Barthelet, Steve Crane, Kelly Pope, Steve Sims, and Frank Giraffe.  At Symbolics 
Graphics Division: Tom McMahon, Andy Kopra, Larry Malone, and Michael Wahrman.  Finally, 
loving thanks to my wife Lisa and our children Eric and Dana.  Before they become fully 
autonomous, I hope I steer the kids in the right direction.  Certainly they are already real 
characters!

References

Arkin, Ronald (1987) “Motor Schema Based Navigation for a Mobile Robot: An Approach to Programming by 
Behavior”, Proceedings of IEEE Conference on Robotics and Automation, pages 264-271.

Arkin, Ronald (1989) “Motor Schema-Based Mobile Robot Navigation”, International Journal of Robotics 
Research, 8(4) pages 92-112.

Arkin, Ronald (1992) “Behavior-based Robot Navigation in Extended Domains”, Journal of Adaptive Behavior, 
1(2) pages 201-225.



Bates, Joseph; Loyall, Bryan; Reilly, Scott (1992) “An Architecture for Action, Emotion, and Social Behavior”, 
Proceedings of the Fourth European Workshop on Modeling Autonomous Agents in a Multi-Agent World, 
S.Martino al Camino, Italy. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/papers/CMU-CS-92-144.ps

Beer, R. D. (1990). Intelligence as Adaptive Behavior: Experiments in Computational Neuroethology. New 
York: Academic Press.  See also: http://yuggoth.ces.cwru.edu/johng/robopaper/robopaper.html

Blumberg, Bruce and Galyean, Tinsley (1995) Multi-Level Direction of Autonomous Creature for Real-Time 
Virtual Environments, Proceedings of SIGGRAPH 95, in Computer Graphics Proceedings, Annual Conference 
Series, ACM SIGGRAPH, pages 47-54. http://bruce.www.media.mit.edu/people/bruce/Siggraph95.final.ps

Blumberg, Bruce (1994) “Action-Selection in Hamsterdam: Lessons from Ethology” in the Proceedings of the 
Third International Conference on the Simulation of Adaptive Behavior (SAB94), D. Cliff, P. Husbands, J-A Meyer, 
and S. Wilson, Editors, MIT Press, Cambridge, Massachusetts, pages 108-117

Braitenberg, Valentino (1984) Vehicles: Experiments in Synthetic Psychology, The MIT Press, Cambridge, 
MA.

Brooks, Rodney A. (1985) "A Robust Layered Control System for a Mobile Robot," IEEE Journal of Robotics 
and Automation 2(1), March 1986, pp. 14--23; also MIT AI Memo 864, September 1985.  See: 
http://www.ai.mit.edu/people/brooks/papers/AIM-864.pdf

Bruderlin, Armin and Calvert, Tom (1989) "Goal-Directed, Dynamic Animation of Human Walking", ACM 
SIGGRAPH'89, Proceedings, vol. 23, pp 233-242.

Cliff, Dave and Miller, Geoffrey (1996) “Co-Evolution of Pursuit and Evasion II: Simulation Methods and 
Results”, From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of 
Adaptive Behavior (SAB96), Maes, Mataric, Meyer, Pollack, and Wilson editors, ISBN 0-262-63178-4, MIT Press. 
http://www.cogs.susx.ac.uk/users/davec/pe.html

Costa, Mônica; Feijó, Bruno; and Schwabe, Daniel (1990) Reactive Agents in Behavioral Animation, Anais do 
SIBGRAPI 95, Lotufo and Mascarenhas editors, São Carlos, SP, pages 159-165. http://www.icad.puc-
rio.br/~monica/pubs.htm

Cremer, James; Kearney, J.; Willemsen, P. (1996) “A Directable Vehicle Behavior Model for Virtual Driving 
Environments”, Proceedings of 1996 Conference on AI, Simulation, and Planning in High Autonomy Systems, La 
Jolla, CA. http://www.cs.uiowa.edu/~cremer/papers/aisp-final.ps

Egbert, Parris and Winkler, Scott (1996) “Collision-Free Object Movement Using Vector Fields”, IEEE 
Computer Graphics and Applications, 16(4), pages 18-24. http://www.computer.org/cga/cg1996/g4toc.htm

Johnson, Michael (1994) WavesWorld: A Testbed for Three Dimensional Semi-Autonomous Animated 
Characters, PhD Thesis, MIT Media Lab. http://wave.www.media.mit.edu/people/wave/PhDThesis/outline.html

Hayes-Roth, Barbara. and van Gent, R. (1996) “Improvisational Puppets, Actors, and Avatars”, Proceedings 
of the 1996 Computer Game Developers’ Conference. Stanford Knowledge Systems Laboratory Report KSL-96-
09.  file://www-ksl.stanford.edu/pub/KSL_Reports/KSL-96-09.ps

Hodgins, Jessica and Brogan, David (1994) “Robot Herds: Group Behaviors for Systems with Significant 
Dynamics”, Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems 
(Artificial Life IV), Brooks and Maes editors, MIT Press, Cambridge, MA, pages 319-324. 
http://www.cc.gatech.edu/gvu/animation/papers/alife.ps.gz

Hodgins, Jessica; Wooten, W; Brogan, D; and O’Brien, J (1995) “Animating Human Athletics”, Proceedings of 
SIGGRAPH 95, in Computer Graphics Proceedings, Annual Conference Series, Robert Cook editor, ACM 
SIGGRAPH, pages 71-78. http://www.cc.gatech.edu/gvu/animation/papers/sig95.ps.gz

Hubbard, Philip (1996) “Approximating Polyhedra with Spheres for Time-Critical Collision Detection”, ACM 
Transactions on Graphics, 15(03), pages 179-210. http://www.acm.org/pubs/tog/hubbard96/

Isaacs, Rufus (1965) Differential Games: A Mathematical Theory with Application to Warfare and Pursuit, 
Control and Optimization, John Wiley and Sons, New York.

Kahn, Kenneth (1979) “Creation of Computer Animation from Story Descriptions”, Technical Report 540, MIT 
AI Lab, Cambridge, Mass.

Maes, Pattie; Darrell, T.; Blumberg, B. (1995) “The Alive System: Full Body Interaction with Autonomous 
Agents”, Computer Animation ’95 Conference, IEEE Press, pages 11-18.

Mataric, Maja (1993) “Designing and Understanding Adaptive Group Behavior”, Adaptive Behavior 4(1), 
pages 51-80. http://www-robotics.usc.edu/~maja/  http://www-robotics.usc.edu/~maja/publications/abj95.ps.gz

Ohashi, Yoshikazu (1994) “Fast Linear Approximations of Euclidean Distance in Higher Dimensions”, in 
Graphics Gems IV, Paul Heckbert editor, Academic Press.   See 
ftp://princeton.edu/pub/Graphics/GraphicsGems/GemsIV/

Perlin, Ken (1985) “An Image Synthesizer”, in SIGGRAPH '85 Proceedings,  Computer Graphics 19(3), pages 
287-296.  See http://www.mrl.nyu.edu/perlin/doc/oscar.html

Perlin, Ken (1995) “Real Time Responsive Animation With Personality”, IEEE Transactions on Visualization 



and Computer Graphics, 1(1) pages 5-15, ISSN 1077-2626.
Perlin, Ken and Goldberg, Athomas (1996) “Improv: A System for Scripting Interactive Actors in Virtual 

Worlds”, Proceedings of SIGGRAPH 96, in Computer Graphics Proceedings, Annual Conference Series, ACM 
SIGGRAPH, pages 205-216.  http://www.mrl.nyu.edu/improv/ http://www.mrl.nyu.edu/improv/sig-paper96/

Pottinger, Dave (1999) “Coordinated Unit Movement” and “Implementing Coordinated Movement”, Game 
Developer Magazine, January, 1999.  See: 
http://www.gamasutra.com/features/game_design/19990122/movement_01.htm 
http://www.gamasutra.com/features/game_design/19990129/implementing_01.htm

Raibert, Marc and Hodgins, Jessica (1991) “Animation of Dynamic Legged Locomotion”, Computer Graphics 
25(4), Proceeding of SIGGRAPH 91, Thomas Sederberg editor, ISSN 0097-8930, pages 349-358.

Raibert, M., Hodgins, J., Ringrose, R., Playter, R., Borvansky, L., Campbell, L., Evans, D., Crane, C., Lamb, 
M. (1991) “On The Run”, SIGGRAPH `91 Electronic Theater, SIGGRAPH Video Review, Issue 72, 
http://www.ai.mit.edu/projects/leglab/simulations/otr/otr.html

Reese, Bjørn and Bryan, Stout (1999) “Finding a Pathfinder” to appear: AAAI 99 Spring Symposium on 
Artificial Intelligence and Computer Games.  See also:  http://www.red.com/breese/navigation.html

Resnick, Mitchel (1989) “LEGO, Logo, and Life”, Proceedings of the Interdisciplinary Workshop on the 
Synthesis and Simulation of Living Systems (ALife ’87), SFI Studies in the Sciences of Complexity, Volume 6, 
Christopher Langton editor, Addison-Wesley, Redwood City, CA, USA, pages 397-406.

Resnick, Mitchel (1993) Behavior Construction Kits, CACM, 36(7), 
http://el.www.media.mit.edu:80/groups/el/Papers/mres/BCK/BCK.html

Resnick, Mitchel et al. (1998) “The Virtual Fishtank” http://el.www.media.mit.edu/groups/el/projects/fishtank/
Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed Behavioral Model, in Computer Graphics, 

21(4) (SIGGRAPH ’87 Conference Proceedings) pages 25-34.  http://www.red.com/cwr/boids.html
Reynolds, C. W. (1988) Not Bumping Into Things, in the notes for the SIGGRAPH 88 course Developments in 

Physically-Based Modeling, pages G1-G13, published by ACM SIGGRAPH. 
http://www.red.com/cwr/nobump/nobump.html

Ridsdale, Gary (1987) “The Director’s Apprentice: Animating Figures in a Constrained Environment”, Ph.D. 
thesis, School of Computing Science, Simon Fraser University.

Sims, Karl (1994) “Evolving Virtual Creatures”, Proceedings of SIGGRAPH 94, Computer Graphics 
Proceedings, Annual Conference Series, Andrew Glassner editor, ACM SIGGRAPH, ISBN 0-89791-667-0, pages 
15-22.  ftp://think.com/users/karl/Welcome.html ftp://think.com/users/karl/siggraph94.ps

Still, G Keith (1994) “Simulating Egress using Virtual Reality - a Perspective View of Simulation and Design”, 
IMAS Fire Safety on Ships.

Strassmann, Steve (1991) Desktop Theater: Automatic Generation of Expressive Animation, PhD thesis, MIT 
Media Lab http://www.method.com/straz/straz-phd.pdf

Thalmann, Daniel; Renault, Olivier and Magnenat-Thalmann Nadia (1990) “A Vision-Based Approach to 
Behavioral Animation”, Journal of Visualization and Computer Animation, John Wiley & Sons, 1(1) pages 18-21.

Travers, Michael (1989) “Animal Construction Kits”, Proceedings of the Interdisciplinary Workshop on the 
Synthesis and Simulation of Living Systems (ALife ’87), SFI Studies in the Sciences of Complexity, Volume 6, 
Christopher Langton editor, Addison-Wesley, Redwood City, CA, USA, pages 421-442.  
http://lcs.www.media.mit.edu/people/mt/agar/agar.html

Travers, Michael (1994) “LiveWorld: A Construction Kit for Animate Systems”, Proceedings of ACM CHI’94 
Conference on Human Factors in Computing Systems, pages 37-38. 
http://mt.www.media.mit.edu/people/mt/papers/chi94/chi94.html

Tu, Xiaoyuan and Terzopoulos, Demetri (1994) “Artificial Fishes: Physics, Locomotion, Perception, Behavior”, 
Proceedings of SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Series, Andrew Glassner 
editor, ACM SIGGRAPH, ISBN 0-89791-667-0, pages 43-50.  
http://www.dgp.toronto.edu/people/tu/papers/sig94.ps

Tu, Xiaoyuan (1996) Artificial Animals for Computer Animation: Biomechanics, Locomotion, Perception, and 
Behavior, PhD dissertation, Department of Computer Science, University of Toronto.   
http://www.dgp.toronto.edu/people/tu/thesis/thesis.html

van de Panne, M., Fiume, E., and Vranesic, Z. G., (1990) "Reusable Motion Synthesis Using State-Space 
Controllers", Proceedings of SIGGRAPH `90, In Computer Graphics Proceedings, ACM SIGGRAPH, pages 225-
234.  See http://www.dgp.toronto.edu/people/van/papers.html

Walter, W. Grey (1950) “An Imitation of Life”, Scientific American, 182(5), pages 42-45.  (see also 
http://gate.uwe.ac.uk:8002/IAS/gwonline.html and http://www.newscientist.com/ns/980725/robotman.html)

Grey-Walter, W. (1953) The Living Brain. Gerald Duckworth and Co., Ltd.
Wiener, Norbert (1948) Cybernetics, or control and communication in the animal and the machine.  



Cambridge, Massachusetts: The Technology Press; New York: John Wiley & Sons, Inc.
Wilhelms, Jane and Skinner, Robert (1990) A “Notion” for Interactive Behavioral Animation Control, IEEE 

Computer Graphics and Applications, 10(3), pages 14-22.
Zapata, R., Lepinay, P., Novales, C., and Deplanques, P. (1992) “Reactive Behaviors of Fast Mobile Robots 

in Unstructured Environments: Sensor-Based Control and Neural Networks” in From Animals to Animats 2: 
Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92), Meyer, 
Roitblat and Wilson editors, MIT Press, Cambridge, Massachusetts, pages 108-115

Zeltzer, David (1983) Knowledge-Based Animation, Proceedings SIGGRAPH/SIGART Workshop on Motion, 
pages 187-192.

Zeltzer, David (1990) “Task Level Graphical Simulation: Abstraction, Representation and Control,” in Making 
Them Move: Mechanics, Control and Animation of Articulated Figures, N. Badler, B. Barsky and D. Zeltzer, 
editors., Morgan Kaufmann Publishers.

View publication stats

https://www.researchgate.net/publication/2495826

