math/概念/排列与组合.md
2024-01-21 22:12:02 +08:00

22 lines
1.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 排列与组合
## 排列
排列英语Permutation是将相异对象根据确定的顺序重排。
例如10个人比赛前3名的排列数。
从10人中选出第1名有10种可能从剩下的10-1=9人中选出第2名有9种可能再从剩下的9-1=8人中选出第3名有8种可能这三步的可能数用**乘法原理**相乘,$10\times9\times8=720$ 即总的排列数。排列数可写作:
$$ \begin{align} A_{10}^3 &= \underbrace{10\times9\times8}_{3个} = 720 \newline A_n^n &= \underbrace{n\times(n-1)\times(n-2)\times\cdots\times1}_{n个} = n! A_n^n叫全排列n!叫做n的阶乘 \newline A_{n}^{m} &= \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} \newline &= \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} \newline &= \dfrac{n!}{(n-m)!} \end{align}$$
公式1$ \boxed{ A_n^n = n! } $
公式2$ \boxed{ A_n^m = \dfrac{n!}{(n-m)!} } $
## 组合
从 n 个不同元素中取出 m 个元素的所有不同组合的个数,叫做从 n 个不同元素中取出 m 个元素的组合数。记作:
$$ C_n^m = \dfrac{A_n^m}{A_m^m} = \dfrac{n!}{(n-m)!m!} $$