Compare commits
No commits in common. "aea5b482448789bc1255afac28ac903dd8caff1d" and "e7229a5158f919b2a87da27a2af6939a34caf8f3" have entirely different histories.
aea5b48244
...
e7229a5158
15
概念/排列与组合.md
15
概念/排列与组合.md
@ -1,15 +0,0 @@
|
||||
# 排列与组合
|
||||
|
||||
## 排列
|
||||
|
||||
排列(英语:Permutation)是将相异对象根据确定的顺序重排。
|
||||
|
||||
例如:10个人比赛前3名的排列数。
|
||||
|
||||
从10人中选出第1名有10种可能,从剩下的10-1=9人中选出第2名有9种可能,再从剩下的9-1=8人中选出第3名有8种可能,这三步的可能数用**乘法原理**相乘,$10\times9\times8=720$ 即总的排列数。排列数可写作:
|
||||
|
||||
$$ A_{10}^3 = \underbrace{10\times9\times8}_{3个} = 720 $$
|
||||
|
||||
$$ A_n^n = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times1}_{n个} = n! (A_n^n叫全排列,n!叫做n的阶乘) $$
|
||||
|
||||
$$ A_{n}^{m} = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} = \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} = \dfrac{n!}{(n-m)!}$$
|
Loading…
Reference in New Issue
Block a user