更新
This commit is contained in:
parent
5501b21682
commit
9cabfc3a98
@ -12,4 +12,4 @@ $$ A_{10}^3 = \underbrace{10\times9\times8}_{3个} = 720 $$
|
|||||||
|
|
||||||
$$ A_n^n = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times1}_{n个} = n! (A_n^n叫全排列,n!叫做n的阶乘) $$
|
$$ A_n^n = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times1}_{n个} = n! (A_n^n叫全排列,n!叫做n的阶乘) $$
|
||||||
|
|
||||||
$$ \begin{align} A_{n}^{m} &= \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} \\ &= \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} \\ &= \dfrac{n!}{(n-m)!} \end{align}$$
|
$$ \begin{align} A_{n}^{m} &= \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} \newline &= \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} \newline &= \dfrac{n!}{(n-m)!} \end{align}$$
|
||||||
|
Loading…
Reference in New Issue
Block a user