gitpush
This commit is contained in:
parent
a5b15fef87
commit
75a5c861e9
@ -9,12 +9,10 @@
|
|||||||
|
|
||||||
$$ a_n = a + (n-1)d \tag{等差数列通项公式} $$
|
$$ a_n = a + (n-1)d \tag{等差数列通项公式} $$
|
||||||
|
|
||||||
换句话说,任意一个等差数列 $\{a_{n}\}$ 都可以写成:$\{\,a,\,a+d,\,a+2d,\,\cdots,\,a+(n-1)d\,\}$
|
|
||||||
|
|
||||||
由等差数列通项公式可以得到以下公式:
|
由等差数列通项公式可以得到以下公式:
|
||||||
|
|
||||||
$$ n = \dfrac{a_n - a}{d} + 1 \tag{已知首项尾项及公差求项数}$$
|
$$ n = \dfrac{a_n - a}{d} + 1 \tag{已知首项尾项及公差求项数}$$
|
||||||
|
|
||||||
等差数列求和公式:
|
换句话说,任意一个等差数列 $\{a_{n}\}$ 都可以写成:$\{\,a,\,a+d,\,a+2d,\,\cdots,\,a+(n-1)d\,\}$
|
||||||
|
|
||||||
$$ \dfrac {(a + a_n) \times n}{2} $$
|
$$ 等差数列各项的和 = \dfrac {(a + a_n) \times n}{2} $$
|
||||||
|
Loading…
Reference in New Issue
Block a user