更新
This commit is contained in:
parent
aea5b48244
commit
6f97a03371
@ -12,4 +12,4 @@ $$ A_{10}^3 = \underbrace{10\times9\times8}_{3个} = 720 $$
|
|||||||
|
|
||||||
$$ A_n^n = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times1}_{n个} = n! (A_n^n叫全排列,n!叫做n的阶乘) $$
|
$$ A_n^n = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times1}_{n个} = n! (A_n^n叫全排列,n!叫做n的阶乘) $$
|
||||||
|
|
||||||
$$ A_{n}^{m} = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} = \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} = \dfrac{n!}{(n-m)!}$$
|
$$ A_{n}^{m} = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} \\\\ = \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} \\\\ = \dfrac{n!}{(n-m)!}$$
|
||||||
|
Loading…
Reference in New Issue
Block a user