From 5501b216829ecb17b68dbaa3957257efc21279bc Mon Sep 17 00:00:00 2001 From: Zhao Xin <7176466@qq.com> Date: Sun, 21 Jan 2024 19:50:40 +0800 Subject: [PATCH] =?UTF-8?q?=E6=9B=B4=E6=96=B0?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 概念/排列与组合.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/概念/排列与组合.md b/概念/排列与组合.md index 9f657c7..1e06ed4 100644 --- a/概念/排列与组合.md +++ b/概念/排列与组合.md @@ -12,4 +12,4 @@ $$ A_{10}^3 = \underbrace{10\times9\times8}_{3个} = 720 $$ $$ A_n^n = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times1}_{n个} = n! (A_n^n叫全排列,n!叫做n的阶乘) $$ -$$ A_{n}^{m} = \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} = \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} = \dfrac{n!}{(n-m)!}$$ +$$ \begin{align} A_{n}^{m} &= \underbrace{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)}_{m个} \\ &= \dfrac{n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)\times(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1}{(n-m)\times(n-m-1)\times(n-m-2)\times\cdots\times1} \\ &= \dfrac{n!}{(n-m)!} \end{align}$$