2022-08-16 05:12:13 +00:00
|
|
|
|
# MathJax数学公式
|
2022-08-16 05:04:43 +00:00
|
|
|
|
|
2022-08-16 09:55:21 +00:00
|
|
|
|
| 名称 | LaTeX语法 | 显示效果 | 用途 |
|
|
|
|
|
| ------------ | ----------------------- | --------------------- | ------------ |
|
|
|
|
|
| 普通字体 | `\mathnormal{N}` | $\mathnormal{N}$ | |
|
|
|
|
|
| 手写字体 | `\mathcal{N}` | $\mathcal{N}$ | |
|
|
|
|
|
| 空心粗体 | `\mathbb{N}`或`\Bbb{N}` | $\mathbb{N}$ | 表示数集 |
|
|
|
|
|
| 紧贴 | `a\!b` | $a\!b$ | 缩进1/6m宽度 |
|
|
|
|
|
| 无空格 | `ab` | $ab$ | 无间距 |
|
|
|
|
|
| 小空格 | `a\,b` | $a\,b$ | 间距1/6m宽度 |
|
|
|
|
|
| 大空格 | `a\ b` | $a\ b$ | 间距1/3m宽度 |
|
|
|
|
|
| quad空格 | `a \quad b` | $a \quad b$ | 间距1m宽度 |
|
|
|
|
|
| 两个quad空格 | `a \qquad b` | $a \qquad b$ | 间距2m宽度 |
|
|
|
|
|
| 上标 | `a^b` | $a^b$ | 指数 |
|
|
|
|
|
| 下标 | `a_b` | $a_b$ | |
|
|
|
|
|
| 向量 | `\vec{a}` | $\vec{a}$ | 矢量 |
|
|
|
|
|
| 上左箭头 | `\overleftarrow{ab}` | $\overleftarrow{ab}$ | |
|
|
|
|
|
| 上右箭头 | `\overrightarrow{ab}` | $\overrightarrow{ab}$ | |
|
|
|
|
|
| 向下取整 | `\lfloor x \rfloor` | $\lfloor x \rfloor$ | |
|
|
|
|
|
| 向上取整 | `\lceil x \rceil` | $\lceil x \rceil$ | |
|
|
|
|
|
| 分数 | `\frac{a}{b}` | $\frac{a}{b}$ | |
|
|
|
|
|
| 大分数 | `\dfrac{a}{b}` | $\dfrac{a}{b}$ | |
|
|
|
|
|
| 对数 | `\log_{a}{b}` | $\log_{a}{b}$ | |
|
|
|
|
|
| 自然对数 | `\ln{a}` | $\ln{a}$ | |
|
|
|
|
|
| 开方 | `\sqrt{x}` | $\sqrt{x}$ | |
|
|
|
|
|
| | | | |
|
|
|
|
|
| | | | |
|
|
|
|
|
|
|
|
|
|
一元二次方程求根公式:$ x_{1,2} = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} $
|
|
|
|
|
|
|
|
|
|
斐波那契数列通项公式
|
|
|
|
|
$$
|
|
|
|
|
f(n) =
|
|
|
|
|
\frac{1}{\sqrt{5}}
|
|
|
|
|
\left[ \left( \frac{1 + \sqrt{5}}{2} \right)^n - \left( \frac{1 - \sqrt{5}}{2} \right)^n \right]
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
n维空间中两个向量 A(a1,a2,…,an) 和 B(b1,b2,…,bn) 之间的欧式距离是:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
d(A,B) = \sqrt{\sum_{i=1}^n{(a_i-b_i)^2}}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
平面中两点 (x1,y1) 和 (x2,y2) 之间的直线距离就是欧式距离:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
冰雹函数
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
f(n) =
|
|
|
|
|
\begin{cases}
|
|
|
|
|
n/2, & \text{if $n$ is even} \\\\
|
|
|
|
|
3n+1, & \text{if $n$ is odd}
|
|
|
|
|
\end{cases}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\begin{equation}
|
|
|
|
|
E = mc^2 \tag{哈哈1}
|
|
|
|
|
\end{equation}
|
|
|
|
|
$$
|
|
|
|
|
|
2022-08-16 05:04:43 +00:00
|
|
|
|
- $ 3^2+4^2=5^2 $
|
|
|
|
|
- $ 3^3+4^3+5^3=6^3 $
|
|
|
|
|
- $ 10^2+11^2+12^2=13^2+14^2 $
|
|
|
|
|
- $ 11^3+12^3+13^3+14^3=20^3 $
|
|
|
|
|
- $ 21^2+22^2+23^2+24^2=25^2+26^2+27^2 $
|
|
|
|
|
- $ 36^2+37^2+38^2+39^2+40^2=41^2+42^2+43^2+44^2 $
|
|
|
|
|
- $ 55^2+56^2+57^2+58^2+59^2+60^2=61^2+62^2+63^2+64^2+65^2 $
|
|
|
|
|
|
2022-08-16 09:23:51 +00:00
|
|
|
|
## 在线资料
|
|
|
|
|
|
|
|
|
|
- [MathJax官方网站](https://www.mathjax.org/)
|
|
|
|
|
- [KaTeX语法支持表](https://katex.org/docs/support_table.html)
|
|
|
|
|
- [ChinaTeX数学排版常见问题集](http://static.latexstudio.net/wp-content/uploads/2018/02/ChinaTeXMathFAQ_V1.1.pdf)
|
|
|
|
|
|
|
|
|
|
应用到Gitea中添加以下内容到:`templates/custom/header.tmpl`
|
|
|
|
|
|
|
|
|
|
```html
|
|
|
|
|
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
|
|
|
|
<script>
|
|
|
|
|
MathJax = {
|
|
|
|
|
tex: {
|
|
|
|
|
inlineMath: [['$', '$'], ['\\(', '\\)']]
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
</script>
|
|
|
|
|
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
|
|
|
```
|